Intermolecular interactions drive the function of all biological processes, and protein interactions often are the focus of drug discovery and development efforts. This course explores the interactions of biological macromolecules such as proteins, beginning with fundamental chemical concepts underlying these noncovalent interactions. The course also explores examples of important drug target protein structures, and molecular docking tools for making predictions about the binding of drug-like molecular inhibitors.
CHEM 371 | The Chemistry of Food
This course explores the science of food and cooking. Topics include flavor, physical properties, nutrition, cooking methods, and reactions. In-class demonstrations and hands-on experiments allow for a tactile and sensory experience. Modern issues in food are discussed, including organic farms, GMO food, and the science behind recent dietary fads. Optional field trips occur throughout the semester.
CHEM 363 | Materials Chemistry
This course emphasizes the synthesis, characterization, and properties of organic materials. In particular, the focus is on the impact of structural changes upon macroscopic properties (mechanical strength, optical behavior, etc.). The first part of the course focuses on polymer science and draws heavily on students’ knowledge of synthetic and mechanistic organic chemistry. The second part of the course emphasizes liquid crystals and other related materials.
CHEM 356 | Organic Synthesis
This course explores methods and strategies that are used in the analysis and synthesis of moderately complex organic molecules. The first part of the course focuses on the use of advanced spectroscopic techniques (with a particular emphasis on 2D NMR techniques) in structure determination. The second part of the course focuses on the use of modern synthetic methods in organic synthesis, with emphasis on the formation of carbon-carbon bonds and the control of stereochemistry. These methods are applied to the synthesis of natural products through application of retrosynthetic analysis.
CHEM 341 | Physical Chemistry II
Introduction to quantum mechanics with applications to molecular spectroscopy. Statistical thermodynamics linking microscopic and macroscopic chemical behavior. Laboratory experiments emphasize fundamental instrumentation and theory associated with physical chemistry.
CHEM 340 | Physical Chemistry I
Chemical thermodynamics and its applications to macroscopic systems. Analysis of microscopic properties of atoms and molecules using kinetic molecular theory with emphasis on Maxwell-Boltzmann distribution functions.
CHEM 338 | Biochemical Analysis
This course introduces analytical techniques and instrumental methods that are commonly used to character biological systems. Techniques surveyed may include chromatography, mass spectrometry, X-ray diffraction, NMR, circular dichroism, fluorescence spectroscopy, and molecular dynamics simulations. The course focuses on applications of these methods to a specific system or research area, which may vary from year to year, e.g. lipid membrane, toxicology, proteomics, etc. This course does not require but is complimentary to CHEM 330 and CHEM 460.
CHEM 333 | Environmental Analytical Chemistry
The course emphasizes the analytical process in making environmental chemistry measurements. An overview of methods used for the chemical analysis of air, soil, and water will be covered. Special attention is given to sampling, quality assurance, spectroscopic measurements and chromatographic separations with mass spectral determination. This course builds on the analysis techniques presented in the prerequisite courses and applies them to the specific challenges when dealing with complex environmental systems.
CHEM 330 | Instrumental Analysis
Introduction to basic theory and applications of modern instrumental methods of analysis. Includes an introduction to electronics, x-ray, ultraviolet, visible, infrared, Raman, mass, and nuclear magnetic resonance spectrometry; atomic absorption and plasma emission; chromatography, thermal, and electrochemical methods.
CHEM 324 | Nanochemistry
This course will introduce students to a wide array of concepts in the interdisciplinary field of nanochemistry. It will begin with an in-depth look at the fundamentals of doing chemistry on small surfaces and how and why nanoscale materials differ greatly in properties from their bulk counterparts. The course will then examine the tools chemists use to characterize and analyze nanomaterials, followed by a survey of the synthesis and application of a variety of nanomaterials, from metal nanoparticles to carbon nanotubes.